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We study multifractal properties of wave functions for a one-parameter family of quantum maps displaying
the whole range of spectral statistics intermediate between integrable and chaotic statistics. We perform ex-
tensive numerical computations and provide analytical arguments showing that the generalized fractal dimen-
sions are directly related to the parameter of the underlying classical map, and thus to other properties such as
spectral statistics. Our results could be relevant for Anderson and quantum Hall transitions, where wave
functions also show multifractality.
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Statistical properties of wave functions and energy levels
of quantum systems have been an important topic of research
in the past decades with many applications to physical sys-
tems. It is now well known that energy levels of, e.g., quan-
tum systems whose classical limit is chaotic, or disordered
systems when eigenstates are extended, follow random ma-
trix theory �RMT�. In this case, wave functions are typically
ergodic and level statistics show level repulsion at short dis-
tances. Conversely, systems whose classical limit is inte-
grable, or disordered systems in a regime of Anderson local-
ization, show Poisson statistics of energy levels �without
level repulsion�, and wave functions are typically localized
in phase space �1�.

It was realized later that another universality class exists
which is intermediate between the latter two. It can be ob-
served in disordered systems at the Anderson transition �2�,
or in certain systems whose classical limit is pseudointe-
grable �3�. In this case, level statistics follow specific laws
called semi-Poisson statistics, and wave functions generally
show multifractal properties. This multifractal behavior has
been extensively studied in the case of the Anderson transi-
tion �4–6�, and has also been seen in quantum Hall transi-
tions �7�. Multifractality or fractality has also been observed
in some other intermediate systems �8�, in eigenstates of cer-
tain chaotic systems �9�, and in open systems �10�.

Recently, a simple model for intermediate systems was
introduced which corresponds to a quantization of a certain
interval-exchange map �11�. The model, although very
simple, displays the whole range of semi-Poisson statistics
when a parameter is changed. Moreover, a certain random-
ization of this system yields a new model of random matrices
with intermediate statistics �12�.

Here, we examine multifractal properties of eigenfunc-
tions for the random matrix model corresponding to interme-
diate quantum maps. We compute the inverse participation
ratios �IPRs�, fractal dimensions, and singularity spectra in a
variety of regimes with different numerical methods. Using
extensive numerical studies and analytical arguments, we
show that the parameter of the model can be related to the
fractal dimensions of the eigenfunctions, as well as to the
spectral statistics. This random matrix model is known to
span the whole range of semi-Poisson statistics for both
short-range and long-range statistics. Thus our results indi-
cate with some generality the existence of a link between
statistics of eigenvalues and multifractal properties of eigen-
functions.

The random matrix model we study is constructed from
an intermediate quantum map, which is the quantization of
the classical map defined on the two-torus by �� : p̄= p+�
�mod 1�; q̄=q+2p̄ �mod 1�, where �p ,q�, the coordinates in
phase space, are the conjugated action and angle variables
and the bars denote the resulting variables after one iteration
of the map. Periodic orbits appear in families corresponding
to structures more complicated than tori, as in pseudointe-
grable systems. The quantization of this map yields a unitary
evolution operator acting on a Hilbert space of dimension
N=1 / �2��� which can be expressed in momentum space by
the N�N matrix �11,12�

Upp� =
ei�p

N

1 − e2i�N�

1 − e2i��p−p�+N��/N
, �1�

with �p=−2�p2 /N. From this quantized map one can con-
struct an ensemble of random matrices, taking �p as random
variables uniformly distributed in �0,2�� �12�. The statistical
properties of the pseudospectrum �the set of eigenphases� of
U strongly depend on the value of the parameter �. On the
one hand, for generic irrational �, the spectral statistics of U
are expected to follow those of the circular unitary ensemble
�CUE� of RMT if the �p are independent �nonsymmetric
case�, or the circular orthogonal ensemble �COE� if one im-
poses a symmetry �N−p=�p. On the other hand, for rational
�=a /b, a variety of different behaviors are observed �11�.
It was shown in Ref. �12� that for aN= 	1 mod b the
spectral statistics is of semi-Poisson type. In particular
the nearest-neighbor spacing distribution is given by
P
�s�=A
s
e−�
+1�s with parameter 
=b−1 in the nonsym-
metric case �
=b /2−1 in the symmetric case�. For
aN� 	1 mod b, P�s� is still of intermediate type. Finally
when � is an integer the eigenphases are equally spaced and
the spectrum is totally rigid. Thus the set of quantum maps U
with rational � gives a random matrix ensemble with inter-
mediate statistics �ISRM� whose spectral statistics corre-
spond to natural intermediate distributions between Poisson
and RMT, controlled by the value of �.

Multifractality properties of wave functions are described
by a whole set of generalized fractal dimensions Dq. For a
vector ���=�i=1

N �i�i� in an N-dimensional Hilbert space, the
multifractal exponents Dq are defined through the scaling of
the moments
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�
i=1

N

��i�2q � N−Dq�q−1�. �2�

The fractal dimension for q=0 corresponds to the dimension
of the support of the measure, which here is D0=1. The
fractal exponent D2 describes the large-size behavior of the
IPR 
=1 /�i=1

N ��i�4, which measures the extension of the state
��� over the basis vectors. The multifractal exponents de-
scribe the behavior of the partition function

Z�q,L� � �
k=1

Nb

�k�L�q � L�q, �q � Dq�q − 1� , �3�

where the vector ��� is divided into Nb=N /L boxes Bk of size
L, and �k�L�=�i�Bk

��i�2, 1�k�Nb. The multifractal proper-
ties are alternatively characterized by the singularity spec-
trum f���, which is the fractal dimension of the set of points
whose singularity exponent is �. It is related to the function
�q by a Legendre transform. Introducing the normalized mea-
sures �k�q ,L�=�k�L�q /�i�i�L�q, the singularity exponent
and the associated fractal dimension can, respectively, be ob-
tained by �13�

��q� =
d�q

dq
= lim

L/N→0

�i�i�q,L�ln �i�L�
ln�L/N�

,

f���q�� = q��q� − �q = lim
L/N→0

�i�i�q,L�ln �i�q,L�
ln�L/N�

. �4�

Let us consider an ensemble of matrices of type �1� with
rational �=a /b, in the nonsymmetric case where all �p are
independent random variables. The mean IPR for eigenvec-
tors of these matrices in p representation for different values
of � with denominator b=7 is displayed in Fig. 1 as a func-
tion of the matrix size. The IPR scales as ND2 provided data
corresponding to different values of aN mod b be treated
separately. Indeed, when different matrix sizes are grouped
into families, the results yield a linear behavior of ln	
� as a

function of ln N, with the same slope D2 for each family.
More generally we observed that the fractal exponents Dq are
well defined if data are organized into families, and that they
only depend on the denominator b of �.

We now proceed to compute the fractal exponents Dq. A
few of these exponents have already been computed in Refs.
�12,14� for the case aN� 	1 mod b. Here our aim is to
characterize Dq as a function of q. The quantities Dq and
f��� are known to be difficult to compute numerically, espe-
cially for large q or �. In this work, we resorted to several
different methods as a consistency check. We first opted for
the usual method of moments. We computed average values
of the moments �2� for different system sizes N ranging from

2000 up to 
12 000 to get rid as much as possible of finite
size effects �15�. The fractal dimensions are extracted from
the slopes of the graphs of ln	�i��i�2q� versus ln N. Here the
average is taken over all eigenvectors and random realiza-
tions of U �from 200 realizations for N
2000 to 1 for
N
12 000�. We also opted for the so-called canonical
method �13� allowing one to determine the f��� spectrum
directly from Eq. �4�. For this method, the numerical com-
putations were done on a single realization of size N

13 000, and 20 box sizes ranging from L=10 to L=0.1N
�again different families of box sizes were treated sepa-
rately�. We also considered other approaches, such as the box
counting method based on Eq. �3�; they all give results in-
termediate between the two previous methods.

The results for Dq are displayed in Fig. 2. For increasing
b, the curve for Dq tends slowly to the limiting curve where
Dq=1 for all q, which corresponds to nonfractal wave func-
tions. This is in agreement with the fact that � tends for
b→� to an irrational number for which the system is ex-
pected to follow RMT. Figure 2 shows that Dq is roughly
linear in a relatively large interval around q=0, and tends to
limiting values D	� for large �q�. The slope of Dq at q=0 is
displayed in the inset of Fig. 3 as a function of b. We found
that the value of this slope is very accurately given by −1 /b.
Since D0=1, the first-order expansion of Dq around q=0
reads

N ≡ ±3 mod 7
N ≡ ±2 mod 7

3N ≡ ±1 mod 7
2N ≡ ±1 mod 7
N ≡ ±1 mod 7

ln N

ln
�ξ�
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FIG. 1. �Color online� Mean IPR of eigenvectors of Eq. �1� as a
function of the vector size N for �=a /b with b=7 and a=1 �filled
symbols�, a=2 �half-filled squares�, a=3 �empty squares�. Straight
lines correspond to the best linear fits. The logarithm is natural.
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FIG. 2. �Color online� Fractal dimension Dq computed with the
canonical method for �=1 /b with b=2 �blue circles�, b=3
�red squares�, b=10 �green triangles�. Solid lines show the linear
approximation Dq=1−q /b. Inset: anomalous exponent �q as a
function of q �solid line�, together with its symmetry with respect to
q=1 /2 �dashed line� for b=2.
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Dq � 1 −
q

b
. �5�

This expansion turns out to be valid in a quite large interval
of q, whose size increases with b. As an example, the nu-
merical values of D1 and D2 together with the linear approxi-
mation �5� are shown in Fig. 3. When b is increased, Eq. �5�
is verified with higher and higher accuracy. Of course Eq. �5�
breaks down for large �q� since Dq is bounded.

To get an understanding of why formula �5� holds, we
note that general arguments for critical systems predict that
the multifractal properties of the eigenstates for q=2 are
linked to the spectral statistics through a relation between the
correlation dimension D2 and the level compressibility �
�16�,

� =
1

2
�1 −

D2

D0

 . �6�

Numerical results for the power-law random banded matrix
ensemble �5� have revealed that this relation is extremely
well verified in the regime of weak multifractality �large
bands�: in this model, the fractal dimension evolves linearly
with respect to q as Dq=1−�q, where � is inversely propor-
tional to the width of the central band �and in this particular
case can be also related to the level compressibility�. How-
ever, for smaller bands Eq. �6� was clearly violated. Suppose
Eq. �6� holds in our case. For ISRM �Eq. �1��, the level
compressibility can be estimated analytically. It is given by
the value of the two-point correlation form factor K2�n /N�
= �Tr Un�2 /N for n /N→0. Following Ref. �11�, we note that
in the semiclassical limit N→� and fixed n, the trace Tr Un

is asymptotically equal to Tr Vn, where Vn is the quantization
of the nth iterate of the classical map, and

Tr Vn =
1

N
�
p=0

N−1

exp�in�p��
k=0

N−1

exp�2i�n�k� . �7�

The modulus squared of the first sum yields �N when all �p
are random. The second sum is a geometric sum: for
�=a /b, it is equal to N if n is divisible by b and to
O�1� otherwise. Thus, K2�n /N�
1 if n is divisible by b,
K2�n /N�
0 in all other cases. The level compressibility is
then given by the time averaged form factor

� = K2�0� � lim
n→�

lim
N→�

1

n �
n�=1

n

K2�n�/N� �
1

b
. �8�

Inserting this value of � into Eq. �6� we get D2�1−2 /b,
which corresponds to Eq. �5� for q=2. A simple linear inter-
polation between this value for D2 and D0=1 yields Eq. �5�.
We note that for small b �strong multifractality� Eq. �6�
breaks down but Eq. �5� is still valid for smaller q values.

Before moving to the study of the singularity spectrum,
we briefly discuss symmetry properties of Dq. It was sug-
gested in Ref. �6� that the anomalous exponents �q, defined
by �q��Dq−1��q−1�, approximately follow the symmetry
relation �q=�1−q. This was shown to hold for the Anderson
model with good accuracy over a large interval of q values.
It is not the case in our system. As an example, the inset in
Fig. 2 gives �q and �1−q for �=1 /2. For values of q where
the exponents Dq have a linear behavior the symmetry rela-
tion holds, as it should since any linear Dq necessarily fulfills
it. Outside the linear regime, the relation is no longer veri-
fied.

We now turn to the singularity spectrum f���. For
�=a /b, the expression obtained using Eq. �5� is

f��� � 1 −
b

4
�� − 1 −

1

b

2

. �9�

It reaches its maximum at ��q=0�=1+1 /b. Since Eq. �5� is
valid around q=0, we expect Eq. �9� to be accurate around
��0�. Figure 4 shows the singularity spectrum, numerically
computed using Eq. �4�, together with the theoretical esti-
mate Eq. �9�. The data displayed show that Eq. �9� approxi-
mates the singularity spectrum with good accuracy over a
large interval of values of � around ��0�. As b→�, the
curve for f��� gets closer and closer to a single point at
�=1, once again corresponding to the nonfractal case of
RMT.

We previously showed that the theory �5� accurately de-
scribes the behavior of the moments in Eq. �2� for small q.
For large values of q, this is bound to break down since Dq
converges to a finite asymptotic value for q→ 	�. Similarly
f��� should have vertical asymptotes at some limiting values
�max and �min, while Eq. �9� is the equation of a parabola.
However, numerical data are not far from the theory �9�, and
some of the features of f��� are well captured by this esti-
mate. For example, the inset of Fig. 4 shows that the width
w=�max−�min of the singularity spectrum scales as 
1 /b0.53

�best fit�. This is close to the scaling 1 /�b of the difference
between the two intersections of the parabola �9� with a
straight line.
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FIG. 3. �Color online� Information dimension D1 �blue circles�
and correlation dimension D2 �red diamonds� as a function of the
denominator of �=1 /b. Full �empty� symbols are numerical values
obtained by the method of moments �the canonical method�. Solid
and dashed lines are the theoretical curves 1−1 /b and 1−2 /b for
D1 and D2, respectively. The values obtained by, e.g., the box
counting method lie in the shaded domain in between. Inset: slope
of Dq at the origin q=0 �triangles� and curve −1 /b �solid line�.
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We finish by noting that in the symmetric case
��N−p=�p in Eq. �1�� we have performed similar computa-
tions, getting very similar data. In particular, Eqs. �5� and �9�
are valid in this case as well.

In conclusion, we have studied multifractal properties of

eigenfunctions for intermediate quantum maps. Although
data corresponding to system sizes N with different values of
aN mod b should be treated separately, they give the same
value for Dq and f���. Our results show that for an interval
of q values whose size increases with b, the fractal exponents
can be related explicitly to the parameter �=a /b of the map
through Eq. �5�, and thus to spectral statistics. A similar re-
sult holds for the singularity spectrum through Eq. �9�. Thus
in such a system, fractal exponents and singularity spectrum
are related to the spectral properties over a wide range of
fractal dimensions. Interestingly enough, our relation is still
valid for small q even at values of b where Eq. �6� does not
hold. As our system corresponds to a random matrix model
covering the whole range of semi-Poisson statistics, both at
short range and long range, we can expect our results to
display some generality. It will be interesting to study if
similar results apply to other intermediate systems, to open
systems, and to other physical systems where wave functions
are multifractal, such as condensed-matter systems at the
Anderson or quantum Hall transitions.
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FIG. 4. �Color online� Singularity spectrum f��� for �=1 /b
with b=2 �blue circles�, b=3 �red squares�, b=10 �green triangles�.
Solid lines show the parabola �9�. Inset: singularity spectrum width
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